8296  Reviews star_rate star_rate star_rate star_rate star_half

Applied Data Science with Python

If you’re an analyst, developer, architect, or technical manager, you will need to use Python in the fields of data science, business analytics, and data logistics. In this intensive 2-day course,...

Read More
$1,600 USD
Duration 2 days
Course Code WA2715
Available Formats Classroom, Virtual

Overview

If you’re an analyst, developer, architect, or technical manager, you will need to use Python in the fields of data science, business analytics, and data logistics. In this intensive 2-day course, we cover both theoretical and practical core concepts of Python and how it applies to these areas.

  • The course includes a deep dive into Python for data science, analytics, and data visualization, as well as an intro to Python in the realm of data engineering. The chapters are reinforced with practical labs where students can apply their theoretical knowledge in the real world.

Skills Gained

  • Applied Data Science and Business Analytics
  • Common Data Science algorithms for supervised and unsupervised machine learning
  • NumPy, pandas, Matplotlib, scikit-learn
  • Python REPLs
  • Jupyter notebooks
  • Data analytics life-cycle phases
  • Data repairing and normalizing
  • Data aggregation and grouping
  • Data visualization
  • Using Jupyter Notebook
  • Understanding Python
  • Understanding NumPy
  • Understanding pandas
  • Repairing and Normalizing Data
  • Data Visualization in Python
  • Data Splitting
  • The Random Forest Algorithm
  • The k-Means Algorithm

Who Can Benefit

Business Analysts, Developers, IT Architects, and Technical Managers

Prerequisites

Participants should have a working knowledge of Python (or have the programming background and/or the ability to quickly pick up Python’s syntax), and be familiar with core statistical concepts (variance, correlation, etc.)

Course Details

Outline

Chapter 1. Python for Data Science

  • In-Class Discussion
  • Python Data Science-Centric Libraries
  • NumPy
  • NumPy Arrays
  • Select NumPy Operations
  • SciPy
  • pandas
  • Creating a pandas DataFrame
  • Fetching and Sorting Data
  • Scikit-learn
  • Matplotlib
  • Seaborn
  • Python Dev Tools and REPLs
  • IPython
  • Jupyter
  • Jupyter Operation Modes
  • Jupyter Common Commands
  • Anaconda
  • Summary

Chapter 2. Defining Data Science

  • What is Data Science?
  • Data Science, Machine Learning, AI?
  • The Data-Related Roles
  • The Data Science Ecosystem
  • Tools of the Trade
  • Who is a Data Scientist?
  • Data Scientists at Work
  • Examples of Data Science Projects
  • An Example of a Data Product
  • Applied Data Science at Google
  • Data Science Gotchas
  • Summary

Chapter 3. Data Processing Phases

  • Typical Data Processing Pipeline
  • Data Discovery Phase
  • Data Harvesting Phase
  • Data Priming Phase
  • Exploratory Data Analysis
  • Model Planning Phase
  • Model Building Phase
  • Communicating the Results
  • Production Roll-out
  • Data Logistics and Data Governance
  • Data Processing Workflow Engines
  • Apache Airflow
  • Data Lineage and Provenance
  • Apache NiFi
  • Summary

Chapter 4. Descriptive Statistics Computing Features in Python

  • Descriptive Statistics
  • Non-uniformity of a Probability Distribution
  • Using NumPy for Calculating Descriptive Statistics Measures
  • Finding Min and Max in NumPy
  • Using pandas for Calculating Descriptive Statistics Measures
  • Correlation
  • Regression and Correlation
  • Covariance
  • Getting Pairwise Correlation and Covariance Measures
  • Finding Min and Max in pandas DataFrame
  • Summary

Chapter 5. Repairing and Normalizing Data

  • Repairing and Normalizing Data
  • Dealing with the Missing Data
  • Sample Data Set
  • Getting Info on Null Data
  • Dropping a Column
  • Interpolating Missing Data in pandas
  • Replacing the Missing Values with the Mean Value
  • Scaling (Normalizing) the Data
  • Data Preprocessing with scikit-learn
  • Scaling with the scale() Function
  • The MinMaxScaler Object
  • Summary

Chapter 6. Data Visualization in Python

  • Data Visualization
  • Data Visualization in Python
  • Matplotlib
  • Getting Started with matplotlib
  • The matplotlib.pyplot.plot() Function
  • The matplotlib.pyplot.bar() Function
  • The matplotlib.pyplot.pie () Function
  • Subplots
  • Using the matplotlib.gridspec.GridSpec Object
  • The matplotlib.pyplot.subplot() Function
  • Figures
  • Saving Figures to a File
  • Seaborn
  • Getting Started with seaborn
  • Histograms and KDE
  • Plotting Bivariate Distributions
  • Scatter plots in seaborn
  • Pair plots in seaborn
  • Heatmaps
  • ggplot
  • Summary

Chapter 7. Data Science and ML Algorithms in scikit-learn

  • In-Class Discussion
  • Types of Machine Learning
  • Terminology: Features and Observations
  • Representing Observations
  • Terminology: Labels
  • Terminology: Continuous and Categorical Features
  • Continuous Features
  • Categorical Features
  • Common Distance Metrics
  • The Euclidean Distance
  • What is a Model
  • Supervised vs Unsupervised Machine Learning
  • Supervised Machine Learning Algorithms
  • Unsupervised Machine Learning Algorithms
  • Choosing the Right Algorithm
  • The scikit-learn Package
  • scikit-learn Estimators, Models, and Predictors
  • Model Evaluation
  • The Error Rate
  • Confusion Matrix
  • The Binary Classification Confusion Matrix
  • Multi-class Classification Confusion Matrix Example
  • ROC Curve
  • Example of an ROC Curve
  • The AUC Metric
  • Feature Engineering
  • Scaling of the Features
  • Feature Blending (Creating Synthetic Features)
  • The 'One-Hot' Encoding Scheme
  • Example of 'One-Hot' Encoding Scheme
  • Bias-Variance (Underfitting vs Overfitting) Trade-off
  • The Modeling Error Factors
  • One Way to Visualize Bias and Variance
  • Underfitting vs Overfitting Visualization
  • Balancing Off the Bias-Variance Ratio
  • Regularization in scikit-learn
  • Regularization, Take Two
  • Dimensionality Reduction
  • PCA and isomap
  • The Advantages of Dimensionality Reduction
  • The LIBSVM format
  • Life-cycles of Machine Learning Development
  • Data Splitting into Training and Test Datasets
  • ML Model Tuning Visually
  • Data Splitting in scikit-learn
  • Cross-Validation Technique
  • Hands-on Exercise
  • Classification (Supervised ML) Examples
  • Classifying with k-Nearest Neighbors
  • k-Nearest Neighbors Algorithm
  • k-Nearest Neighbors Algorithm
  • Hands-on Exercise
  • Regression Analysis
  • Regression vs Correlation
  • Regression vs Classification
  • Simple Linear Regression Model
  • Linear Regression Illustration
  • Least-Squares Method (LSM)
  • Gradient Descent Optimization
  • Multiple Regression Analysis
  • Evaluating Regression Model Accuracy
  • The R2 Model Score
  • The MSE Model Score
  • Logistic Regression (Logit)
  • Interpreting Logistic Regression Results
  • Decision Trees
  • Decision Tree Terminology
  • Properties of Decision Trees
  • Decision Tree Classification in the Context of Information Theory
  • The Simplified Decision Tree Algorithm
  • Using Decision Trees
  • Random Forests
  • Hands-On Exercise
  • Hands-on Exercise
  • Support Vector Machines (SVMs)
  • Naive Bayes Classifier (SL)
  • Naive Bayesian Probabilistic Model in a Nutshell
  • Bayes Formula
  • Classification of Documents with Naive Bayes
  • Unsupervised Learning Type: Clustering
  • Clustering Examples
  • k-Means Clustering (UL)
  • k-Means Clustering in a Nutshell
  • k-Means Characteristics
  • Global vs Local Minimum Explained
  • Hands-On Exercise
  • XGBoost
  • Gradient Boosting
  • Hands-On Exercise
  • A Better Algorithm or More Data?
  • Summary

Chapter 8. (Optional) Quick Introduction to Python for Data Engineers

  • What is Python?
  • Additional Documentation
  • Which version of Python am I running?
  • Python Dev Tools and REPLs
  • IPython
  • Jupyter
  • Jupyter Operation Modes
  • Jupyter Common Commands
  • Anaconda
  • Python Variables and Basic Syntax
  • Variable Scopes
  • PEP8
  • The Python Programs
  • Getting Help
  • Variable Types
  • Assigning Multiple Values to Multiple Variables
  • Null (None)
  • Strings
  • Finding Index of a Substring
  • String Splitting
  • Triple-Delimited String Literals
  • Raw String Literals
  • String Formatting and Interpolation
  • Boolean
  • Boolean Operators
  • Numbers
  • Looking Up the Runtime Type of a Variable
  • Divisions
  • Assignment-with-Operation
  • Comments:
  • Relational Operators
  • The if-elif-else Triad
  • An if-elif-else Example
  • Conditional Expressions (a.k.a. Ternary Operator)
  • The While-Break-Continue Triad
  • The for Loop
  • try-except-finally
  • Lists
  • Main List Methods
  • Dictionaries
  • Working with Dictionaries
  • Sets
  • Common Set Operations
  • Set Operations Examples
  • Finding Unique Elements in a List
  • Enumerate
  • Tuples
  • Unpacking Tuples
  • Functions
  • Dealing with Arbitrary Number of Parameters
  • Keyword Function Parameters
  • The range Object
  • Random Numbers
  • Python Modules
  • Importing Modules
  • Installing Modules
  • Listing Methods in a Module
  • Creating Your Own Modules
  • Creating a Runnable Application
  • List Comprehension
  • Zipping Lists
  • Working with Files
  • Reading and Writing Files
  • Reading Command-Line Parameters
  • Accessing Environment Variables
  • What is Functional Programming (FP)?
  • Terminology: Higher-Order Functions
  • Lambda Functions in Python
  • Example: Lambdas in the Sorted Function
  • Other Examples of Using Lambdas
  • Regular Expressions
  • Using Regular Expressions Examples
  • Python Data Science-Centric Libraries
  • Summary

Lab Exercises

  • Lab 1. Using Jupyter Notebook
  • Lab 2. Understanding Python
  • Lab 3. Understanding NumPy
  • Lab 4. Understanding pandas
  • Lab 5. Repairing and Normalizing Data
  • Lab 6. Data Visualization in Python
  • Lab 7. Data Visualization in Python Project
  • Lab 8. Data Splitting
  • Lab 9. The k-Nearest Neighbors Algorithm [OPTIONAL]
  • Lab 10. The Random Forest Algorithm
  • Lab 11. Spam Detection with Random Forest Project [OPTIONAL]
  • Lab 12. The k-Means Algorithm
  • Lab 13. Building Regression Models with XGBoost Library
  • Lab 14. A Hand-Made Classifier Project [OPTIONAL]
|
View Full Schedule

Schedule

2 options available

  • May 5, 2025 - May 6, 2025 (2 days)
    Virtual | 10:00 AM 6:00 PM EST
    Language English
    Select from 1 options below
    Virtual |10:00 AM 6:00 PM EST
    Virtual | 10:00 AM 6:00 PM EST
    Enroll
    Enroll Add to quote
  • Jun 16, 2025 - Jun 17, 2025 (2 days)
    Virtual | 10:00 AM 6:00 PM EST
    Language English
    Select from 1 options below
    Virtual |10:00 AM 6:00 PM EST
    Virtual | 10:00 AM 6:00 PM EST
    Enroll
    Enroll Add to quote

FAQ

Does the course schedule include a Lunchbreak?

Classes typically include a 1-hour lunch break around midday. However, the exact break times and duration can vary depending on the specific class. Your instructor will provide detailed information at the start of the course.

What languages are used to deliver training?

Most courses are conducted in English, unless otherwise specified. Some courses will have the word "FRENCH" marked in red beside the scheduled date(s) indicating the language of instruction.

What does GTR stand for?

GTR stands for Guaranteed to Run; if you see a course with this status, it means this event is confirmed to run. View our GTR page to see our full list of Guaranteed to Run courses.

Does Ascendient Learning deliver group training?

Yes, we provide training for groups, individuals and private on sites. View our group training page for more information.

What does vendor-authorized training mean?

As a vendor-authorized training partner, we offer a curriculum that our partners have vetted. We use the same course materials and facilitate the same labs as our vendor-delivered training. These courses are considered the gold standard and, as such, are priced accordingly.

Is the training too basic, or will you go deep into technology?

It depends on your requirements, your role in your company, and your depth of knowledge. The good news about many of our learning paths, you can start from the fundamentals to highly specialized training.

How up-to-date are your courses and support materials?

We continuously work with our vendors to evaluate and refresh course material to reflect the latest training courses and best practices.

Are your instructors seasoned trainers who have deep knowledge of the training topic?

Ascendient Learning instructors have an average of 27 years of practical IT experience and have also served as consultants for an average of 15 years. To stay current, instructors spend at least 25 percent of their time learning new, emerging technologies and courses.

Do you provide hands-on training and exercises in an actual lab environment?

Lab access is dependent on the vendor and the type of training you sign up for. However, many of our top vendors will provide lab access to students to test and practice. The course description will specify lab access.

Will you customize the training for our company’s specific needs and goals?

We will work with you to identify training needs and areas of growth.  We offer a variety of training methods, such as private group training, on-site of your choice, and virtually. We provide courses and certifications that are aligned with your business goals.

How do I get started with certification?

Getting started on a certification pathway depends on your goals and the vendor you choose to get certified in. Many vendors offer entry-level IT certification to advanced IT certification that can boost your career. To get access to certification vouchers and discounts, please contact info@ascendientlearning.com.

Will I get access to content after I complete a course?

You will get access to the PDF of course books and guides, but access to the recording and slides will depend on the vendor and type of training you receive.

How do I request a W9 for Ascendient Learning?

View our filing status and how to request a W9.

Reviews

Instructor, Training material & span of the training is neatly planned.

Instructor knew her stuff. Long time in the industry. Course was easy to follow and very informative.

Great company -- easy to sign up and very organized. Loved my teacher and class overall.

the course is good, covers many aspects, wish the lab is a little bit more in depth

The training was great . But i expected some of the Networking concepts would be covered in this certification .

Prerequisites