GC Partner no outline H
8396  Reviews star_rate star_rate star_rate star_rate star_half

Machine Learning on Google Cloud

This course introduces the artificial intelligence (AI) and machine learning (ML) offerings on Google Cloud that support the data-to-AI lifecycle through AI foundations, AI development, and AI...

Read More
$4,500 USD GSA  $2,783.38
Duration 5 days
Course Code GCP-ML
Available Formats Classroom, Virtual

Overview

This course introduces the artificial intelligence (AI) and machine learning (ML) offerings on Google Cloud that support the data-to-AI lifecycle through AI foundations, AI development, and AI solutions. It explores the technologies, products, and tools available to build an ML model, an ML pipeline, and a generative AI project. You learn how to build AutoML models without writing a single line of code; build BigQuery ML models using SQL, and build Vertex AI custom training jobs by using Keras and TensorFlow. You also explore data preprocessing techniques and feature engineering.

Skills Gained

This series of courses teaches participants the following skills:

  • Describe the technologies, products, and tools to build an ML model, an ML pipeline, and a Generative AI project.
  • Understand when to use AutoML and BigQuery ML.
  • Create Vertex AI-managed datasets.
  • Add features to the Vertex AI Feature Store.
  • Describe Analytics Hub, Dataplex, and Data Catalog.
  • Describe how to improve model performance.
  • Create Vertex AI Workbench user-managed notebook, build a custom training job, and deploy it by using a Docker container.
  • Describe batch and online predictions and model monitoring.
  • Describe how to improve data quality and explore your data.
  • Build and train supervised learning models.
  • Optimize and evaluate models by using loss functions and performance metrics.
  • Create repeatable and scalable train, eval, and test datasets.
  • Implement ML models by using TensorFlow or Keras.
  • Understand the benefits of using feature engineering.
  • Explain Vertex AI Model Monitoring and Vertex AI Pipelines.

Who Can Benefit

This class is intended for the following participants:

  • Aspiring machine learning data analysts, data scientists, and data engineers
  • Learners who want exposure to ML and use Vertex AI, AutoML, BigQuery ML, Vertex AI Feature Store, Vertex AI Workbench, Dataflow, Vertex AI Vizier for hyperparameter tuning, and TensorFlow/Keras

Prerequisites

To get the most out of this specialization, participants should have:

  • Some familiarity with basic machine learning concepts
  • Basic proficiency with a scripting language, preferably Python

Course Details

Course Outline

Introduction to AI and Machine Learning on Google Cloud

  • Recognize the AI/ML framework on Google Cloud.
  • Identify the major components of Google Cloud infrastructure.
  • Define the data and ML products on Google Cloud and how they support the data- to-AI lifecycle.
  • Build an ML model with BigQueryML to bring data to AI.
  • Define different options to build an ML model on Google Cloud.
  • Recognize the primary features and applicable situations of pre-trained APIs, AutoML, and custom training.
  • Use the Natural Language API to analyze text.
  • Define the workflow of building an ML model.
  • Describe MLOps and workflow automation on Google Cloud.
  • Build an ML model from end-to-end by using AutoML on Vertex AI.
  • Define generative AI and large language models.
  • Use generative AI capabilities in AI development.
  • Recognize the AI solutions and the embedded generative AI features.

Launching into Machine Learning

  • Describe how to improve data quality.
  • Perform exploratory data analysis.
  • Build and train supervised learning models.
  • Describe AutoML and how to build, train, and deploy an ML model without writing a single line of code.
  • Describe BigQuery ML and its benefits.
  • Optimize and evaluate models by using loss functions and performance metrics.
  • Mitigate common problems that arise in machine learning.
  • Create repeatable and scalable training, evaluation, and test datasets.

TensorFlow on Google Cloud

  • Create TensorFlow and Keras machine learning models.
  • Describe the TensorFlow main components.
  • Use the tf.data library to manipulate data and large datasets.
  • Build a ML model that uses tf.keras preprocessing layers.
  • Use the Keras Sequential and Functional APIs for simple and advanced model creation.
  • Train, deploy, and productionalize ML models at scale with the Vertex AI Training Service.

Feature Engineering

  • Describe Vertex AI Feature Store.
  • Compare the key required aspects of a good feature.
  • Use tf.keras.preprocessing utilities for working with image data, text data, and sequence data.
  • Perform feature engineering by using BigQuery ML, Keras, and TensorFlow.

Machine Learning in the Enterprise

  • Understand the tools required for data management and governance.
  • Describe the best approach for data preprocessing: From providing an overview of Dataflow and Dataprep to using SQL for preprocessing tasks.
  • Explain how AutoML, BigQuery ML, and custom training differ and when to use a particular framework.
  • Describe hyperparameter tuning by using Vertex AI Vizier to improve model performance.
  • Explain prediction and model monitoring and how Vertex AI can be used to manage ML models.
  • Describe the benefits of Vertex AI Pipelines.
  • Describe best practices for model deployment and serving, model monitoring, Vertex AI Pipelines, and artifact organization.
|
View Full Schedule

Schedule

1 options available

  • Oct 6, 2025 - Oct 10, 2025 (5 days)
    Live Virtual | 9:00AM 5:00PM EDT
    Language English
    Select from 1 options below
    Live Virtual |9:00AM 5:00PM EDT
    Live Virtual | 9:00AM 5:00PM EDT
    Enroll
    Enroll Add to quote

FAQ

Does the course schedule include a Lunchbreak?

Classes typically include a 1-hour lunch break around midday. However, the exact break times and duration can vary depending on the specific class. Your instructor will provide detailed information at the start of the course.

What languages are used to deliver training?

Most courses are conducted in English, unless otherwise specified. Some courses will have the word "FRENCH" marked in red beside the scheduled date(s) indicating the language of instruction.

What does GTR stand for?

GTR stands for Guaranteed to Run; if you see a course with this status, it means this event is confirmed to run. View our GTR page to see our full list of Guaranteed to Run courses.

Does Ascendient Learning deliver group training?

Yes, we provide training for groups, individuals and private on sites. View our group training page for more information.

What does vendor-authorized training mean?

As a vendor-authorized training partner, we offer a curriculum that our partners have vetted. We use the same course materials and facilitate the same labs as our vendor-delivered training. These courses are considered the gold standard and, as such, are priced accordingly.

Is the training too basic, or will you go deep into technology?

It depends on your requirements, your role in your company, and your depth of knowledge. The good news about many of our learning paths, you can start from the fundamentals to highly specialized training.

How up-to-date are your courses and support materials?

We continuously work with our vendors to evaluate and refresh course material to reflect the latest training courses and best practices.

Are your instructors seasoned trainers who have deep knowledge of the training topic?

Ascendient Learning instructors have an average of 27 years of practical IT experience and have also served as consultants for an average of 15 years. To stay current, instructors spend at least 25 percent of their time learning new, emerging technologies and courses.

Do you provide hands-on training and exercises in an actual lab environment?

Lab access is dependent on the vendor and the type of training you sign up for. However, many of our top vendors will provide lab access to students to test and practice. The course description will specify lab access.

Will you customize the training for our company’s specific needs and goals?

We will work with you to identify training needs and areas of growth.  We offer a variety of training methods, such as private group training, on-site of your choice, and virtually. We provide courses and certifications that are aligned with your business goals.

How do I get started with certification?

Getting started on a certification pathway depends on your goals and the vendor you choose to get certified in. Many vendors offer entry-level IT certification to advanced IT certification that can boost your career. To get access to certification vouchers and discounts, please contact info@ascendientlearning.com.

Will I get access to content after I complete a course?

You will get access to the PDF of course books and guides, but access to the recording and slides will depend on the vendor and type of training you receive.

How do I request a W9 for Ascendient Learning?

View our filing status and how to request a W9.

Reviews

Great class I learned a great deal from the material. There would seem to a large amount that I need to learn about.

Overall ExitCertified is a great training provider and the remote learning is as effective as in person.

Course was great and informative. The instructor had a good flow and was very personable.

ExitCertified provided a very organized way to learn and provided materials to follow along.

Although there seemed to be too many links for the course, everything worked smoothly.