8296  Reviews star_rate star_rate star_rate star_rate star_half

Comprehensive Natural Language Processing (NLP)

This Natural Language Processing (NLP) training course teaches students the applications and techniques for developing NLP models, including large language models (LLMs). Attendees learn how to build...

Read More
$1,995 USD
Duration 3 days
Course Code WA3486
Available Formats Classroom

Overview

This Natural Language Processing (NLP) training course teaches students the applications and techniques for developing NLP models, including large language models (LLMs). Attendees learn how to build and evaluate NLP models for tasks such as text generation, text classification, image synthesis, and image classification in use cases in insurance, finance, and other sectors.

Skills Gained

  • Understand the basics of Natural Language Processing, including large language models (LLMs), and its applications
  • Understand the use cases for different Natural Language Processing architectures such as RNNs, LSTMs, and transformers
  • Build neural networks using deep learning frameworks such as TensorFlow and Keras
  • Learn about different techniques and algorithms used in Natural Language Processing
  • Investigate the semantic aspect of embeddings and their role in representing data in a lower-dimensional space, including techniques such as implementing word embeddings for natural language processing tasks
  • Review the capabilities and applications of large language models (LLMs), including BERT, GPT-3, and LLaMA, investigating their role in natural language processing, creative text generation, and code development
  • Develop skills to design and implement Natural Language Processing models
  • Explore the relationship between foundation models, fine-tuning, and transfer learning
  • Gain proficiency in evaluating and optimizing Natural Language Processing models
  • Apply Natural Language Processing models to real-world problems
  • Understand the importance of prompt engineering in NLP models
  • Learn the different types of prompts and their use cases
  • Develop skills to design and refine prompts for NLP models
  • Understand the importance of machine learning interpretability
  • Explore different types of ML interpretability models
  • Analyze standard techniques and methods for explainability
  • Evaluate the effectiveness of interpretability methods
  • Discuss ethical considerations and responsible AI practices
  • Understand regulatory compliance in AI systems

Who Can Benefit

  • Programmers
  • Software Engineers
  • Computer Scientists
  • AI and Machine Learning Practitioners
  • Data Scientists
  • Data Engineers
  • Data Analysts

Prerequisites

  • Extensive prior Python development experience
  • Core Python Data Science skills, including the use of NumPy and Pandas
  • Foundational Knowledge in AI and Machine Learning

Course Details

Course Outline

Introduction to Natural Language Processing

  • History of Natural Language Processing and Generative AI
  • What are Natural Language Processing models?
  • Understanding generative models
  • Contrasting generative and discriminative models

NLP Use Cases and Tasks

  • NLP use cases in insurance, finance, and consulting
  • Examples of NLP products

Tensorflow and Keras

  • What is TensorFlow and Keras?
  • Tensors and Python API
  • TensorFlow Lite
  • TFX (TensorFlow Extended)
  • TensorFlow Toolkit Stack
  • TensorBoard
  • Core Keras data structures
  • Components of a Keras model
  • Creating neural networks in Keras
  • The strengths and weaknesses of the functional API

Neural Networks and Deep Learning

  • What is a neural network?
  • Types of neural networks
  • Deep Learning
  • Navigating neural network layers
  • Neurons
  • Perceptrons and multi-layer perceptrons
  • Neural network training

Traditional NLP Models: RNNs and LSTMs

  • What are RNNs and LSTMs?
  • Feedforward neural networks vs. RNNs
  • Mathematical foundations of RNNs and LSTMs
  • Training and inference on RNNs and LSTMs
  • Limitations of RNNs and LSTMs

Text Representations

  • The semantic aspect of word embeddings
  • Word embeddings in NLP
  • Word embeddings in transformers
  • Word embedding similarity metrics

Transformers

  • What is a transformer?
  • Transformer use cases
  • Encoders and decoders
  • Self-attention mechanism
  • Multi-head attention
  • Tokenization
  • Transformer architecture

Foundation Models

  • What are foundation models or Large Language Models (LLMs)
  • Multimodality of foundation models
  • Model training techniques
  • LLM capabilities vs. size
  • Model quantization
  • Options for accessing LLMs
  • Context window and prompts
  • Foundation model architecture
  • Diffusion models and the diffusion process

Prompt Engineering and Retrieval-Augmented Generation (RAG)

  • Prompt engineering basics
  • Prompt types
  • Prompt context
  • Prompt pitfalls
  • One-shot prompting
  • Few-shot prompting
  • Chain-of-Thought prompting
  • Automated prompt engineering
  • What is RAG?
  • Vector indexing
  • LlamaIndex indexes: List, Vector Store, Tree, Keyword
  • LangChain: Model I/O, Retrieval, Chains, Memory, Agents

Pre-training and Fine-tuning Large Language Models

  • Building the pre-trained LLM
  • Benefits and challenges of pre-training
  • Pre-training phases
  • Fine-tuning over pre-training
  • Data preparation and processing
  • Data augmentation: text, image, and signal data
  • When to use fine-tuning
  • Domain adaptation
  • Multi-task learning

Evaluating LLMs

  • Diversity Metrics
  • Likelihood
  • Perplexity
  • Inception Score
  • BLEU
  • ROUGE
  • Human evaluation
  • LLM-on-LLM evaluation

Security and Privacy

  • What is AI cybersecurity?
  • Threats and challenges in AI cybersecurity
  • Adversarial attacks
  • Model inversion and extraction
  • Data poisoning
  • Robustness techniques
  • Differential privacy
  • Federated learning
  • Best practices in secure AI development

Responsible AI

  • What is an AI system?
  • Principles of AI Ethics
  • Fairness
  • Accountability
  • Transparency
  • Privacy and autonomy
  • Reliability
  • Explainable AI (XAI)
  • Model-Agnostic Visual Analytics (MAVA)
  • Human-AI Collaborated Evaluation (HACE)
  • AI ethics in practice
  • Regulatory compliance in AI systems

Lab Exercises

  • Learning the Colab Jupyter Notebook Environment
  • Basics of Tensorflow and Keras
  • Build a neural network to classify insurance fraud
  • Dive into RNNs and LSTMs
  • Dive into word embeddings
  • Implement transformer models for finance tasks
  • Compare LLM models for insurance tasks
  • Prompt engineering and RAG for insurance question-answering
  • Fine-tune an LLM for insurance topic classification
  • Evaluating LLMs
  • Nemo Guardrails for finance tasks
  • Design an LLM audit process

Schedule

FAQ

Does the course schedule include a Lunchbreak?

Classes typically include a 1-hour lunch break around midday. However, the exact break times and duration can vary depending on the specific class. Your instructor will provide detailed information at the start of the course.

What languages are used to deliver training?

Most courses are conducted in English, unless otherwise specified. Some courses will have the word "FRENCH" marked in red beside the scheduled date(s) indicating the language of instruction.

What does GTR stand for?

GTR stands for Guaranteed to Run; if you see a course with this status, it means this event is confirmed to run. View our GTR page to see our full list of Guaranteed to Run courses.

Does Ascendient Learning deliver group training?

Yes, we provide training for groups, individuals and private on sites. View our group training page for more information.

What does vendor-authorized training mean?

As a vendor-authorized training partner, we offer a curriculum that our partners have vetted. We use the same course materials and facilitate the same labs as our vendor-delivered training. These courses are considered the gold standard and, as such, are priced accordingly.

Is the training too basic, or will you go deep into technology?

It depends on your requirements, your role in your company, and your depth of knowledge. The good news about many of our learning paths, you can start from the fundamentals to highly specialized training.

How up-to-date are your courses and support materials?

We continuously work with our vendors to evaluate and refresh course material to reflect the latest training courses and best practices.

Are your instructors seasoned trainers who have deep knowledge of the training topic?

Ascendient Learning instructors have an average of 27 years of practical IT experience and have also served as consultants for an average of 15 years. To stay current, instructors spend at least 25 percent of their time learning new, emerging technologies and courses.

Do you provide hands-on training and exercises in an actual lab environment?

Lab access is dependent on the vendor and the type of training you sign up for. However, many of our top vendors will provide lab access to students to test and practice. The course description will specify lab access.

Will you customize the training for our company’s specific needs and goals?

We will work with you to identify training needs and areas of growth.  We offer a variety of training methods, such as private group training, on-site of your choice, and virtually. We provide courses and certifications that are aligned with your business goals.

How do I get started with certification?

Getting started on a certification pathway depends on your goals and the vendor you choose to get certified in. Many vendors offer entry-level IT certification to advanced IT certification that can boost your career. To get access to certification vouchers and discounts, please contact info@ascendientlearning.com.

Will I get access to content after I complete a course?

You will get access to the PDF of course books and guides, but access to the recording and slides will depend on the vendor and type of training you receive.

How do I request a W9 for Ascendient Learning?

View our filing status and how to request a W9.

Reviews

The technical data in the AWS Solutions Architect course was very thorough.

Topics, material and specially instructor (Graham Godfrey) was beyond my expectations.

very good and spcecific course and above all a very good instructor. In few days I have learned a lot.

Very good couse and again we would like to see more videos on removing FRUs

It was very informative and covered all the required materials along with handson labs for practice.